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Comment on “Exact solution of the wave dynamics of a particle bouncing chaotically
on a periodically oscillating wall”
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We attempt to show both analytically and numerically that a recent work by Willemsen [Phys.
Rev. E 50, 3116 (1994)] is not correct and the proposed exact solution of the so-called bouncer

model appears to be incorrect.
PACS number(s): 03.40.Kf, 03.65.—w, 05.45.+b

Recently Willemsen published a paper [1] on the quan-
tum description of a point particle bouncing on a peri-
odically oscillating plate in a uniform gravitational field.

For a number of reasons quantum theories of bouncing
ball models have been present in the literature in the last
decade. We discuss here problems connected with solving
the Schrodinger equation with time-dependent boundary
conditions [2-5], fingerprints of chaos in quantum me-
chanics [6], and many other topics of the so-called quan-
tum chaology.

The latter problems require periodic, at least, time
dependencies of the position of the reflecting plate. It
was believed that only these periodic time dependencies,
which in addition lead to a piecewise separable (in po-
sition and time) Schrodinger equation, allow an analytic
solution. These are the reasons why the statement of
Ref. [1], which announces finding the exact solution of
the Schrédinger equation describing a ball bouncing on a
harmonically oscillating plate, i.e., solving the problem in
the case that excludes a separation of variables, attracted
our genuine attention.

The purpose of this Comment, however, is to demon-

strate our reasoning that the cited statement of Ref. [1]
is false. The author of Ref. [1] seeks a solution of the
following equation

i0,® = —102® + g2®, z > z,(t), (1)
subject to the boundary conditions
D[z = z,(t),t] =0, x,(t) = ho[l + cos (wt)]. (2)

Changing variables ¢ = z—z,,(t) and making the replace-
ment ¢(z,t) = ®(x,t) exp [igho(t + sin (wt)/w)], one gets

i0 = [Ho + f(H)pl¢ = >0, (3)
where

1 d
H0:—§83+gx, p = —10,, f(t)z—aww(t)- (4)

The function ¢ fulfills the following time-independent
boundary condition ¢(xz = 0,t) = 0. The solution of
Eq. (3) as given in [1], reads

o(z,t) = e 0 Z b (x)e Ent /000 dz' ¢, (z') o[z’ — h(t)], (5)

where £(t) = —g [[ t'f(¢')dt!, h(t) = [} f(t')dt' = 2., (0) —

¢(z,t = 0).

z,(t) and Hopn(z) = Endn(z), ¢n(0) = 0, and ¥o(z) =

In the first part of this Comment it will be shown that, contrary to what is claimed in Ref. [1], the formula given
in (5) is not a solution of Eq. (3). To this end let us substitute (5) into (3), multiply the result by ¢,,(z), and then

integrate from 0 to oco. Thus, we get

f(t)um(t) = f(t) l:——gtam +1 /0<>° ‘I’Q[.’E - h(t)]c?,_.qﬁm(w)d:c —_ Z anei(Em~En)t<¢m|p|¢n> =0, (6)

with
an= [ do'gn(a)Wole’ ~ (V). (7)
0
Note that the eigenfunctions ¢, (z) form the complete or-

thonormal set of functions of the Sturm-Liouville prob-
lem posed by Hy and the boundary conditions. Assum-
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ing that ¥o(z) = O(z)¢po(x), with O(z) being the stan-
dard step function, we will now prove that apart from
the discrete set of values (t3) of the variable ¢, f(tx) = 0,
Eq. (6) is not satisfied. To this end, note that the equa-
tion Re[u,(t)] = 0 now reads

0 = —gtlom(t) + gxo,m(t) (8)
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with

Io,m(2)

/ ™ bolz — h(t)]bm (2)dz,
h(t)
(9)

sin(E,, — E,)t
Xo,m = Z —(F,n—TE;l—IO’n(t)
n,n#EFm

and we have used the exact relation [7]: (E,, —
E,){(¢m|p|én) = 19(6m,n — 1). The integral in (9) can be
performed analytically [8] for the Airy functions ¢, (z) =
cnAi(az — z,) with constant a, ¢, = a'/2/Ai’(—z,) and
—2z, being zeroes of Ai(y), E, = a%z,/2. The result
reads

Io,n(t) = cocn [lm Ai(a(z — h) — z9)Al(az — 2z,)dz

CoCn v .
= "0m  Ai(— - 10
> h =) Ai'(—zo)Ai(ah — 2z,), (10)

with Ai'(z) being a derivative of the Airy function. For
large m the inequality |Iom| < N/|zm — 20 — ah| holds
with NV being a constant. The proof that xom(t) is
bounded goes as follows:

sin[(E,, — E,)t
IXom ()< %Jfo,n(t)
n,n#EmM m "
1 N
< ngm [Epn — Bn| |2n — 20 — ah|

For large n (n > m) terms in the above series behave as
1/E2, ie., n~%/3 which means that the series is conver-
gent and Xo,m(t) is bounded. Going back to Eq. (8) and
recalling that I ., (t) is a bounded oscillating function of
t, it is immediately seen that the right-hand side of (8)
diverges as t — oo and thus Eq. (8) does not hold.

Bearing this fact in mind one shall not be surprised by
the obviously incorrect consequences that stem from the
alleged solution given in Eq. (25) of [1], i.e., our Eq. (5).
Note first of all that for t = T = 27 /w and ¥o(z) = ¢i(x)
it follows from (5), due to A(T) = 0, that

¢(z,T) = e_iE(T)e_iE"Tqﬁk(z) (11)

and this means in turn that the operator U, which trans-
forms the state from t = 0 to ¢ = T, is diagonal in the
H, representation.

In what follows we present results of the numerical
calculations of the matrix elements of U and demonstrate
that U is not diagonal. If in (3) a change of the phase
of the wave function is performed ¢(x,t) = exp{i[—fz +

(1/2) 7 f3(¢')dt']}T(z, t), then (3) reads

i0,T(z,t) = [-182% + (9 — f)z][(, ). (12)
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TABLE I. Probabilities P,(T') as calculated from Eq. (14)
for ho = 0.25,g = 1.0, and w = 1.0. N = number of basis
functions.

n N=10 N=20 N=100 N=400
1 0.8986455 0.8986415 0.8986411 0.8986411
2 0.0916495 0.0916527 0.0916531 0.0916531
3 0.0090242 0.0090246 0.0090246 0.0090246
4 0.0006482 0.0006482 0.0006482 0.0006482
5 0.0000161 0.0000160 0.0000160 0.0000160
6 0.0000118 0.0000118 0.0000118 0.0000118
7 0.0000039 0.0000036 0.0000036 0.0000036
8 0.0000005 0.0000005 0.0000005 0.0000005
9 0.0000001 0.0000001 0.0000001 0.0000001
10 0.0000002 0.0000004 0.0000004 0.0000004
Writing the function I' in the form
T(z,t) = 3 ba(t)gn(c) (13)
n

one obtains for the b, the following system of ordinary
differential equations:

bn

ibrn = Bn(1 = 2f/39)m + f9 3 5"

n,n#Em

(14)

In Eq. (14) we used matrix elements of z as given in
Ref. [8]. We integrated numerically the above equations
for by(t = 0) = 6, with ¥ = 1 and in Table I the
probabilities P,(T') = |U,x|?> = |b,(T)|? are presented.
Results of the formalism developed in Ref. [1] would give
in this case Pp(T) = |an(T)|? = 6px = |an(0)|? = P,(0).
It is needless to stress the fundamental differences in the
behavior of the considered model in both cases (e.g., the
lack or occurrence of diffusion, respectively).

In conclusion let us state that we feel that we have
demonstrated both analytically and numerically that the
solution proposed in [1] is not correct. The fact that
formal solutions of the Schrodinger equation are valid
only for a very restricted class of functions is not always
remembered and often leads to erroneous conclusions as
was noted, e.g., in [3,9,10].

The criticized work and those cited above raise very
subtle and difficult questions on working in a half space
in quantum mechanics. The problems of a similar nature
are also encountered in the case of the celebrated model
of a particle in the infinitely deep potential well with
time-dependent width [11,12]. Unfortunately, the possi-
ble sources of troubles concerning problems in restricted
spaces are far from being understood in the existing lit-
erature.

This work has been partly supported by the Polish
Government (KBN Grant No. 2P302 100 07).
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